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non-data-parallel

programs using the
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message-passing library
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1 Introduction

Message passing is among the most popular techniques for parallelizing scientific
programs on distributed-memory architectures. The reasons for its success are wide

availability (MPI [8]), efficiency, and full tuning control provided to the program-
mer. A major drawback, however, is that incremental parallelization, as offered by

compiler directives, is not generally possible, because all data structures have to be

changed throughout the program simultaneously. Charon remedies this situation

through mappings between distributed and nondistributed data. It allows breaking

up the parallelization into small steps, guaranteeing correctness at every stage.

Several tools are available to help convert legacy codes into high-performance

message-passing programs. They usually target data-parallel applications, whose

loops carrying most of the work can be distributed among all processors without

much dependency analysis (e.g. [5]). Others do a full dependency analysis and then

convert the code virtually automatically (e.g. [6]). Even more toolkits are available
that aid construction from scratch of message passing programs [2, 3, 4, 7]. None,

however, allows piecemeal translation of codes with complex data dependencies (i.e.
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non-data-parallel programs) into message passing codes.
The Charon library (available in both C and Fortran) provides incremental

parallelization capabilities by linking legacy code arrays with distributed arrays.

During the conversion process, nondistributed and distributed arrays exist side by

side, and simple mapping functions allow the programmer to switch between the

two in any location in the program. Charon also provides wrapper functions that

leave the structure of the legacy code intact, but that allow execution on truly

distributed data. Finally, the library provides a rich set of communication functions

that support virtually all patterns of remote data demands in realistic structured-

grid scientific programs, including transposition, nearest-neighbor communication,

pipelining, gather/scatter, and redistribution. At the end of the conversion process
most intermediate Charon function calls will have been removed, the nondistributed

arrays will have been deleted, and virtually the only remaining Charon functions

calls are the high-level, highly optimized communications.
Distribution of the data is under complete control of the programmer, although

a wide range of useful distributions is easily available through predefined functions.
A crucial aspect of the library is that it does not allocate space for distributed arrays,

but accepts programmer-specified memory. This has two major consequences. First,
codes parallelized using Charon do not suffer from encapsulation; user data is always

directly accessible. This provides high efficiency, and also retains the possibility

of using message passing directly for highly irregular communications. Second,

nondistributed arrays can be interpreted as (trivial) distributions in the Charon

sense, which allows them to be mapped to truly distributed arrays, and vice versa.

This is the mechanism that enables incremental parallelization.

In this paper we provide a brief introduction of the library (for more details

see [9]) and then focus on the actual steps in the parallelization process, using some
representative examples from, among others, the NAS Parallel Benchmarks [1].

We show how a complicated two-dimensional pipeline---the prototypical non-data-

parallel algorithm-- can be constructed with ease. To demonstrate the flexibility

of the library, we give examples of the stepwise, efficient parallel implementation

of nonlocal boundary conditions common in aircraft simulations, as well as the

construction of the sequence of grids required for multigrid.

2 Data distribution

Charon supports the parallelization of scientific computations through domain de-

composition. One or more multi-dimensional grids are defined, and arrays are as-

sociated with these grids. The grids are divided into nonoverlapping pieces, which

are assigned to the processors in the computation. The associated arrays are thus
distributed as well. This process takes place in several steps.

First, Fig. la, a logically rectangular grid of a certain dimensionality and

extent is defined, using CHN_Create_grid and CHN_Set_grid_size, respectively.

This step establishes a geometric framework for all arrays associated with the grid.

It also attaches to the grid an MPI [8] communicator, which serves as the context
and processor subspace within which all subsequent Charon-orchestrated commu-
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a. Define logical grid b. Define tessellation
CHN_Creato_grid(...,MPI_COMM_WORLD,...) CHN_Create_section
CHN_Set_grid_size CHN Set unipartition_cuts
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c. Define processor assignment
CHN_Createdecomposition
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d. Define distributed array
CHN_Createdistribution(...,MPI_REAL,...)
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Figure 1. Defining distributed arrays using Charon

nications take place. Multiple coincident or non-coincident communicators may be

used within one program, allowing the programmer to assign the same or different

(sets of) processors to different grids in a multiple-grid computation.

Second, Fig. lb, the grid is divided into a number of logically rectangular cells,

using CHN_Create_section, and CHN Set_cuts. The resulting section contains

a number of cutting planes (cuts) along each coordinate direction. Whereas the

programmer can specify any number of cuts and cut locations, a single high-level
instruction often suffices to define all the cuts belonging to a particular domain

decomposition. For example, CHN_Set_unipartition_cuts divides the grid evenly

into as many cells as there are processors in the communicator--nine in this case.

Third, Fig. lc, cells are assigned to processors, resulting in a decomposition,

which is initialized using CHN_Create_decomposition. The programmer can assign
ownership of each cell in the decomposition to any processor individually, or all at

once through a single high-level instruction. For example, CHN_Set_unipartition_
owners assigns each cell in the unipartition section to a different processor. Creating

the cells and assigning them to processors are separated to provide flexibility. We

may divide a grid into a target number of cells for execution on a parallel machine,

but assign all cells to the same processor for debugging on a workstation.

Finally, Fig. ld, arrays with one or more spatial dimensions (same as the grid)
are associated with a decomposition, resulting in distributions. The associated func-

tion is CHN_Create_distribution. The arrays may represent scalar quantities at

each grid point, or higher-order tensors. A distribution has a regular MPI data type

(MPI_REAL in this case). To accommodate stencil operations we specify a number

of ghost points. These form a border (shaded area) around each cell, which acts
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Figure 2. Examples of copying data from adjacent cells (GriN_Copy_Sate)

for a two-dimensional 9rid

as a buffer for data copied from adjacent cells. Most importantly, the programmer

specifies the starting address of the data storing the distributed array. While at first

this may appear a disadvantage---the user has to manage all memory--it enables

Charon to support incremental paralIelization, as explained in Section 3.2.

3 Communications

A data-parallel computation can be loosely defined as a collection of independent

operations on a shared data set. Task assignment is determined by the subset of

the data owned by each processor. We can similarly define a data-parallel com-

munication as a collection of independent data transfers within a shared data set.

Assignment of transfer tasks is determined by the data source and destination lo-

cations. Most of Charon's communications are data parallel, specified completely

in terms of grid points, not processors.

3.1 Copying interface data

In stencil computations on structured grids the need for nonlocal data is often lim-

ited to (spatially) nearest neighbors. CHN Copy_faces lets the programmer specify

exactly which ghost points to update. Some examples of the effect of the copy

operation are given in Fig. 2. Since Charon does not require that all potential

communication candidate points in a grid be involved, it is possible to support non-

data-parallel computations through data-parallel communications. In general, all

processors within the grid's MPI communicator execute CHN Copy_faces, but those

that do not own points involved in the operation may safely skip the call. A useful
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variation is CHN_Copy_faces_all, which fills all ghost points of the distribution in
all coordinate directions. It is the variation most commonly encountered in other

parallelization packages for structured-grid applications, since it conveniently sup-

ports data parallel computations. But it is not suitable to implement, for example,

the pipeline algorithm of Section 4.1.

3.2 Redistribution

CHN Redistribute maps between any two compatible distributions (same grid,

data type, and tensor rank). This enables, for example, transposition of data [9],

but also mapping between distributed and nondistributed arrays. This is a result
of the fact that Charon takes addresses of user data to store distributed arrays. A

nondistributed array in a legacy code can be viewed as a trivially distributed array

(section consists of a single cell) in the Charon sense, and can therefore be mapped
to a truly distributed array. Let ad and a be the integer handles of the distributed

and nondistributed arrays, respectively, that Charon assigns to distributions. The

single statement CHN_Redistribute(ad,a) suffices to scatter the nondistributed

array. CHN Redistribute (a,ad) does the gather.
A practical way of constructing parallel bypasses of serial code is as follows.

First, define trivial distributions for nondistributed legacy code arrays. This requires

figuring out the dimensions of the grids used and defining the sections, decomposi-

tions and distributions accordingly. Each section has only one cell. No new space is

needed; the programmer points to the starting addresses of the legacy code arrays.

when defining the distributions. Next, define the corresponding truly distributed

arrays (again using Charon), and allocate the associated memory. Let ald, a2d, a3d

and al, a2, a3 be the handles of distributed and nondistributed arrays, respectively.

Now we can define distributed/serial ada ,tor functions spread/collect.

void spread(adl,ad2,ad3,al,a2,a3){ void collect(al,a2,a3,ald,a2d,a3d){
int adl,ad2,ad3,al,a2,a3; int adl,ad2,ad3,al,a2,a3;
CHN_Redistribute(ald,al); CHNRedistribute(al,ald);

I CHN_Redistribute(a2d,a2); CHNRedistribute(a2,a2d);

} CHN_Redistribute(a3d,a3); return; CHN_Redistribute(a3,a3d); return;}
Code bracketed by these calls has full access to the distributed arrays, but the rest

of the serial program remains unchanged. Thus, the programmer can focus on a sin-

gle loop or even statement and parallelize it, using Charon's communication and/or

wrapping [9] functions, and be assured that the rest of the program is still correct.

3.3 Gather/scatter

The last communication provided is CHN_Get_tile (and its inverse CHN_Put_tile).

It copies a subset of a distributed array--possibly owned by several processors--into

the local memory of a specified processor (cf. Global Arrays' gaget [7]). This is

useful for applications that have non-nearest-neighbor data dependencies, such as

nonlocal boundary conditions for flow problems (Section 4.3).
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4 Examples

We show by example the steps taken to parallelize legacy code using Charon, and

demonstrate its expressiveness and functionality.

4.1 NAS LU Parallel Benchmark

In [9] we described the results of parallelizing two Fortran codes (SP, LU) from the
well-known NAS Parallel Benchmarks [1], where it was found that the performance

of the Charon versions was comparable to that of the original, painstakingly de-

rived plain MPI (NPB-MPI) versions. Here we describe in more detail the steps in
creating the two-dimensional pipeline in the parallel LU. The numerical problem is

Au n+l = b(u"), where u is the time-dependent solution, n the time step index, and b

an explicit 13-point-star stencil operator. The discretization matrix A is the sum of

L+ and L_, first-order direction-biased difference operators that define two sweeps

over the entire grid. L_ demands that no point (i, j, k) be updated before points

(ip,jp, kp) with smaller indices: (ip < i,jp < j, kp < k,(ip,jp,kp) _ (i,j,k)). This
data dependency is the same as for the Gauss-Seidel method with lexicographical

point ordering. L+ sweeps in the other direction.

NPB-MPI divides the grid into pencils, one per processor, and pipelines the

solution process, Fig. 3; we do the same with Charon. Here is the code that defines

a 3D grid, creates a section, excludes the third dimension from partitioning, creates

and assigns the pencils, and defines a dis___tribution (two ghost points) representing

a vector with five components at each grid point on the resulting decomposition.

call CHN_Create_grid(grid, MPI_COMM_WORLD, 3)

call CHN_Set_grid_size (grid, 0, nx)

call CHN_Set_grid_size (grid, 1 ,ny)

call CHN_Set_grid_size (grid, 2 ,nz)

call CHN_Create_section (section, grid)

call CHN_Exclude_part ition_direction (section, 2)

call CHN Set_unipartition_cuts (section)

call CHN_Create_decomposition(decomp, section)

call CHN_Set_unipartition_owners (decomp)

call CHN_Create_distribution (dist, section ,MPI_REAL8, arr_dat, 2,1,5)

The variablearr_dat containsthe startingaddress ofthe memory associatedwith

the distribution.In Fortran thisisusuallyan array name.

The initialstep in the parallelizationof the serialversionof LU isto selecta

target piece of code, bracket it with a parallel bypass (see Section 3.2) and paral-

lelize the intervening statements. We focus on blts, which applies the L_-operator.

The serial code contains a triple loop (over k, j, and ±) that traverses the grid in

the natural order and applies L_ in a pointwise fashion. That is, the third array

index k is in the outer loop, and the computation proceeds plane by plane. We

rewrite the loop nest so that the index space is tiled, where each tile corresponds to

a unit-thickness k-slice of a pencil of the decomposition. This is a simple process,

because Charon provides query functions that return start and end indices of cells

in a decomposition. Each tile fetches ghost point data from its two neighbors in
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the -i and -j direction (CHN_Copy_faces), regardless of the location of the pencil.

Communications beyond the boundary of the grid are simply ignored if periodicity
is set to false. The start of the two-dimensional pipeline is illustrated in Fig. 3.

ncil decomposition
• no. indicated on pencil)

Step 3: Update tiles

Step h Update tile

Step 4: Update edges

Step 2: Update edges

lll[j
Step 5: Update tiles

Figure 3. Pencil decomposition (16 processors); Start of pipelined solution

process for LU code (L_)

All processors participate in the copying of neighbor data, even though they have no

work to do for pencils not (adjacent to) their own. However, the calling processor

only applies L_ if it owns the current tile (this test, line 7, is also supported using

a query function). In outline this process looks as follows:
001 do 10 k = 2, k_max-1

002 do 10 jcell = 1, jcell_max

003 do I0 icell = I, icell_max

004 copy ghost point data from cell(ice11,jcell-l) in slice k

005 copy ghost point data from cell(icell-l,jce11) in slice k

006 if (calling processor owns cell(icell,jce11))

007 loop over points in slice k of cell(icell,jce11) and apply L-

008 10 continue

Lines 4 and 5 are single calls to function CHN_Copy_faces. %Ve describe the

parameters for copying in the i-direction (cf. Figures 1, 2): periodicity = false,

copy direction = right (positive i-direction), copy dimension = 0 (first coordinate

direction), cut number = icell-1, number of ghost points copied = 1 (L_ is a first-

order difference operator), tensor components = all. The remaining two parameters

are vectors of length two that indicate the starting and ending (j, k)-coordinates of

the subset of the face of the pencil across which the copying should take place. In

this case these subsets are line segments (edges of the tile).

The above construction of the parallel code segment can itself be achieved

in a piecemeal fashion. First, the serial code is rewritten to tile the index space

I I
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(this modification can be checked for correctness), after which the parallel/serial

adaptors are inserted and lines 4, 5, and 6 are added to make the code segment

parallel (line 7 must then reference distributed instead of nondistributed arrays).
Even smaller steps are possible using Charon's wrapper functions [9].

An interesting feature of the parallel code is that communications appear

functionally to occur only at the left and bottom edges of each tile. This runs

counter to common experience in message passing codes, with receive calls for left

and bottom edges, and send calls for right and top edges. The difference comes

about because all processors participate in all communications, and each invocation

of ¢HN_Copy_faces precipitates both send and receive calls on those processors

whose data is involved. This keeps the structure of the code simple. In a subsequent

optimization we can restrict tile visits to only those owned by the calling processor

(eliminating the loops over all pencils in lines 2 and 3, and the test in line 6). In

that case we must add calls tb CHN_Copy_faces for the right and top edges as well.

The resulting code is as efficient as the originally published NPB-MPI LU code [9].

4.2 NAS MG Parallel Benchmark

The NAS Multigrid (MG) Parallel Benchmark [1] is simpler than LU, SP, or BT,

because the core solution procedure is explicit, and thus data parallel. However, a

complication is that several levels of grid refinement must be created and managed,

and the coarsest grids cannot be distributed among more than eight processors.
In NPB-MPI we skip certain processors in the assignment of cells. For example, a

2×2 x2-grid is distributed among only the even numbered processors in a 16-processor

computation. This produces a good load balance, but leads to rather complex

logic and communications. Although Charon easily supports this kind of custom

data distribution, we choose a much simpler and equally efficient decomposition,

illustrated in two dimensions in Fig. 4. We only show interior grid points. Grid

cells, indicated by shading, are assigned to different processors.

We create fully distributed arrays for all grid levels that can be distributed

uniformly among all processors. For all other grid levels, and also for the coarsest
level that can still be distributed uniformly, we create nondistributed arrays (inher-

ited from the serial code). When an operation involves two grid levels (interpolation

or restriction), one of which cannot be fully distributed, we use CHN_P,edistribute

to map input or output arrays to the appropriate distributed or nondistributed

version. Before interpolation from grid level two to three, we gather (redistribute)

the distributed array at level three, so that the entire operation (involving both

levels) takes place on nondistributed arrays. Afterwards, we scatter the result for

use in other operations. Restriction is implemented similarly. The redistributions
have trivial cost, since they are used when there is only one (interior) grid point

per processor.

Performance results for the code, running on an SGI Origin2000 with 256

250MHz R10000 processors are compared with those for NPB-MPI on the same

machine in Fig. 5. Classes A, B, and C refer to standard NPB problem sizes,

ranging from 1303 to 5143 grid points. Within the range of scalability there is only

a very small difference, pointing to the efficiency of Charon, and its validity as an

m
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Figure 4. Distributed and nondistributed arrays for 2D multigrid code at

different levels of refinement. Each patch (indicated by shading) is assigned to a

different processor.
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Figure 5. Performance results for Charon and original NPB-MPI versions

of MG code on SGI Origin

4.3 Nonlocal boundary condition

Scientific programs for realistic problems need to accommodate realistic boundary

conditions. Some of these are notoriously difficult to implement using message
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passing. We take as an example the C-grid flow-through conditions for airfoil com-

putations. The physical problem is shown schematically in Fig. 6a.

a. Physical space

flow through fq

/la 0

b. Computational space

e flqw through fT

x airfoil x

Figure 6. C-grid with flow-through condition along branch cut

A structured grid is 'wrapped' around the airfoil, such that the computation-

ally distinct grid line segments a-b and d-c coincide in physical space, as indicated in
Fig. 6b. To ensure single-valuedness of the solution, we compute the average of the

flow solutions immediately above and below the cut and store this value at both grid

points that physically coincide on the cut. The problem is that the two physically

close contributors (p and q) to the value at a point x on the cut are not adjacent in

computational space. They may reside on different processors. It is possible that

contributions for one processor come from more than one other processors, or that
some contributions are local while others are remote.

The simplest solution to the problem, requiring hardly any change to the serial

code, lets one processor gather all the data, implement the boundary condition, and

scatter the results. Gathers and scatters are accomplished by OliN_Get_tile and

CHN_Put_tile. They specify a root processor that receives in or sends from a local

buffer data corresponding to any Cartesian subset of a distributed array, regardless

of data location. While this is not a scalable solution, it is often efficient enough if

the number of points on the flow-through boundary is small. Further optimization is

achieved by engaging more processors in the evaluation of the averages. Using query
functions, each processor determines which of the contributing values are local, and

then requests remote 'counterparts' to be fetched. This halves the communication

volume, and also balances the computational load more evenly.

5 Conclusions

We have demonstrated, mostly through examples, the power and efficiency of Charon

for incremental parallelization of scientific codes using message passing. While the li-

brary targets structured-grid applications, its concept, namely providing formalisms

for the interpretation of user space in terms of high-level data abstractions, can be

extended to other areas of scientific computing, such as unstructured-grid applica-

tions, which would then also become amenable to incremental parallelization.
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